SOAL-SOAL ORKOM

SOAL-SOAL MK - ORKOM (Tata Sumitra)
  1. Jelaskan struktur detail dari komputer IAS? 
  2. Jelaskan metode untuk mengatasi perbedaan perkembangan antara Processor dengan komponen komputer lainnya?
  3. Jelaskan perbedaan utama teknologi CISC dan RIS?
Jawaban :

No1. 
Komputer IAS pada tahun 1946 didesain oleh Von Neumann bersama koleganya dengan konsep pemrograman yang kemudian disebut dengan IAS Computer (Computer of Institute for Advanced Studies)karena dikembangkan di Computer of Institute for Advanced Studies.

Secara umum, struktur dari komputer IAS adalah sebagai berikut:
  • 1 Memori utama, untuk menyimpan data dan intruksi.
  • 2 Arithmetic Logic Unit (ALU), untuk mengolah data binner
  • 3Control Unit, untuk melakukan interpretasi instruksi - instruksi di dalam memori sehingga adanya eksekusi instruksi tersebut
  • I/0, untuk berinteraksi dengan lingkungan luar

Gambar 1. Struktur Umum Komputer IAS
Secara detail Komputer IAS memiliki 1000 lokasi penyimpanan x 40 bit words, dengan rincian:
• Binary number
• 2 x 20 bit instructions
Dengan format memori sebagai berikut :
Gambar 2. Format Memori Struktur Komputer IAS
Gambar 3. Struktur Detail Komputer IAS
ALU-IAS(Computer of Institute for Advanced Studies)
  • 1.       Memory  Buffer  Register  (MBR), berisi  sebuah  word  yang  akan disimpan  di  dalam  memori  atau digunakan  untuk  menerima  word dari memori.
  • 2.       Memory  Address  Register  (MAR), untuk  menentukan  alamat  word  di memori  untuk  dituliskan  dari  MBR atau dibaca oleh MBR.
  • 3.       Instruction  Register  (IR),  berisi instruksi  8  bit  kode  operasi  yang akan dieksekusi.
  • 4.       Instruction  Buffer  Register  (IBR), digunakan  untuk  penyimpanan sementara  instruksi  sebelah  kanan word di dalam memori.
  • 5.       Program Counter (PC), berisi alamat pasangan  instruksi  berikutnya  yang akan diambil dari memori.
  • 6.       Accumulator  (AC)  dan  Multiplier Quotient  (MQ),  digunakan  untuk penyimpanan  sementar operand dan  hasil  ALU.  Misalnya,  hasil perkalian  2  buah  bilangan  40  bit  adalah sebuah bilangan 80 bit; 40 bit yang  paling  berarti  (most  significant bit)  disimpan  dalam  AC  dan  40  bit lainnya  (least  significant  bit) disimpan dalam MQ.
  • 7.       IAS  beroperasi  secara  berulang membentuk  siklus  instruksi. Komputer  IAS memiliki  21  instruksi, yang  dapat  dikelompokkan  seperti berikut ini :
  • ü  Data  tranfer,  memindahkan data  di  antara  memori  dengan register  –  register  ALU  atau antara dua register  ALU sendiri.
  • ü  Unconditional  branch,  perintah- perintah  eksekusi  perca-bangan tanpa syarat tertentu.
  • ü  Conditional  branch,  perintah- perintah  eksekusi  percabangan yang  memerlukan  syarat tertentu  agar  dihasilkan  suatu nilai dari percabangan tersebut.
  • ü  Arithmetic,  kumpulan  operasi  – operasi yang dibentuk oleh ALU.ü  Address  Modify,  instruksi  – instruksi  yang  memungkinkan pengubahan  alamat  saat  di komputasi  sehingga memungkinkan  fleksibilitas alamat  yang  tinggi  pada program.
No. 2
Metode yang digunakan adalah dengan memilih inti (core) dari processor dan clock speed yang setara dengan komponen komputer lain. Missal , Komputer dengan satu processor atau satu core processor bisaanya memiliki dua buah bridge, northbridge dan southbridge.
Northbridge mengatur pertukaran data antara processor, VGA Card/graphic card (PCI Express atau AGP) dan memory (RAM), untuk itu disetarakan dengan clock speed pada komponen VGA card dan RAM agar kinerja processor stabil, sedangkan Southbridge mengatur pertukaran data pada I/O device pada perangkat komputer namun tidak terlalu berpengaruh terhadap kinerja. Hal ini akan terlihat pebedaannya ketika komputer dipergunakan untuk akses render video atau game yang membutuhkan speed clock dan graphic yang kuat dibanding hanya untuk memproses aplikasi office. Pada dasarnya metode yang diberlakukan hanya dengan mengidentifikasi processor dari perkembanganya. Setiap perubahannya itu di identifikasi dari segi bentuk dan ukuran serta kinerja dalam pemrosesannya.
Clock speed adalah ukuran dari seberapa besar kecepatan komputer menyelesaikan perhitungan dasar dan operasi. Ini diukur sebagai dalam frekuensi `hertz, dan paling sering mengacu pada kecepatan CPU komputer, atau Central Processing Unit. Clock speed merupakan frekuensi kecepatan tindakan yang sangat tinggi, satuannya adalah megahertz dan gigahertz. 1 megahertz artinya satu-juta siklus per detik, sementara gigahertz adalah satu-milyar siklus per detik. Jadi komputer dengan kecepatan clock 800MHz berjalan 800.000.000 siklus per detik, sedangkan komputer 2.4GHz berjalan 2.400.000.000 siklus per detik.
Bagaimana Clock speed, digunakan sebagai standar kecepatan komputer adalah masalah yang masih jadi pertentangan, dan sebagian besar pembuat chip tampak menuju pada kesimpulan bahwa Clock speed harus ditinggalkan sebagai nilai utama yang diberikan. Masalahnya datang dari kenyataan bahwa, walaupun Clock speed bekerja sebagai indikator yang cukup handal, terjadi persaingan antar perusahaan chipset yang berbeda pendapat itu. Salah satu alasan Clock speed CPU tidak dapat diandalkan sebagai kecepatan komputer secara keseluruhan adalah banyak faktor lain yang ikut bermain. Jumlah RAM komputer, Clock speed RAM, Clock speed dari front-side bus, dan ukuran cache, semua itu memainkan peran penting dalam menentukan kinerja komputer secara keseluruhan.
Ketika membandingkan satu chip Intel Pentium dengan Pentium chip lain misalnya, clock speed merupakan indikator yang cukup baik. Komputer berbasis Pentium 800Mhz akan melakukan tugas prosesor sekitar dua kali kecepatan komputer Pentium 400MHz. Ketika membandingkan prosesor perusahaan yang berbeda, bagaimanapun juga  cerita akan berubah. Jika kita melihat pada kedua chip yaitu Pentium dan chip AMD misalnya, kita menemukan bahwa AMD cenderung untuk melakukan tugas yang lebih cepat dari Pentium pada kelas yang sebanding. Sebuah chip AMD 1.8GHz performanya melebihi signifikan chip Pentium 1.8Ghz, bahkan melakukan mendekati kecepatan Pentium 2.2GHz.
Untuk alasan ini, AMD berhenti menetapkan clock speed mereka sebagai metode utama beriklan bagi komputer mereka. AMD Athlon 64 3000, misalnya, memiliki kecepatan clock hanya 1.8GHz, tetapi AMD bertekad untuk menjadi kira-kira sebanding dengan Pentium 4 pada 3GHz. Intel sendiri juga mulai menjauh dari iklan clock speed, terutama karena pengenalan mereka pada laptop-oriented M, yang memiliki kecepatan clock jauh lebih rendah untuk mengoptimalkan kinerja portabel. Dengan tetap berpegang pada model clock speed, Intel membuat komputer Pentium-M-nya terlihat seperti lambat dan lemah dibandingkan dengan model Pentium 4 mereka.
Walaupun clock speed masih bisa memberikan gambaran umum tentang daya komputasi, pada saat ini orang-orang lebih sering merekomendasikan benchmark untuk membandingkan kecepatan komputer. Melihat hasil pengukuran bagaimana berbagai prosesor menangani tugas-tugasnya, akan memberikan gambaran yang lebih jelas tentang bagaimana komputer akan bekerja untuk Anda. Satu komputer dapat secara signifikan lebih cepat dari yang lain dengan mengubah gambar dalam program desain grafis, misalnya, tetapi lebih lambat pada permainan video-intensif. Paradigma ini lebih baik, artinya peringkat ditentukan oleh kemampuan komputer melakukan tugas tertentu, bukan fokus secara eksklusif pada clock speed. Dengan demikian akhirnya konsumen akan lebih memahami seperti apa produk yang mereka bisa harapkan.

No. 3
CISC (complex instructionset computers ) adalah melaksanakan suatu perintah cukup dengan beberapa baris bahasa mesin sedikit mungkin. Hal ini bisa tercapai dengan cara membuat perangkat keras prosesor mampu memahami dan menjalankan beberapa rangkaian operasi. Untuk tujuan contoh kita kali ini, sebuah prosesor CISC sudah dilengkapi dengan sebuah instruksi khusus, yang kita beri nama MULT.
RISC (reduced instruction setcomputers) hanya menggunakan instruksi-instruksi sederhana yang bisa dieksekusi dalam satu siklus. Dengan demikian, instruksi ‘MULT’ sebagaimana dijelaskan sebelumnya dibagi menjadi tiga instruksi yang berbeda, yaitu “LOAD”, yang digunakan untuk memindahkan data dari memori ke dalam register, “PROD”, yang digunakan untuk melakukan operasi produk (perkalian) dua operan yang berada di dalam register (bukan yang ada di memori) dan “STORE”, yang digunakan untuk memindahkan data dari register kembali ke memori.
Cara sederhana untuk melihat kelebihan dan kelemahan dari arsitektur RISC (Reduced Instruction Set Computers) adalah dengan langsung membandingkannya dengan arsitektur pendahulunya yaitu CISC (Complex Instruction Set Computers).

Perkalian Dua Bilangan dalam Memori

Pada bagian kiri terlihat sebuah struktur memori (yang disederhanakan) suatu computer secara umum. Memori tersebut terbagi menjadi beberapa lokasi yang diberi nomor 1 (baris): 1 (kolom) hingga 6:4. Unit eksekusi bertanggungjawab untuk semua operasi komputasi. Namun, unit eksekusi hanya beroperasi untuk data-data yang sudah disimpan ke dalam salah satu dari 6 register (A, B, C, D, E atau F). Misalnya, kita akan melakukan perkalian (product) dua angka, satu disimpan di lokasi 2:3 sedangkan lainnya di lokasi 5:2, kemudian hasil perkalian tersebut
dikembalikan lagi ke lokasi 2:3.

Pendekatan CISC
Tujuan utama dari arsitektur CISC adalah melaksanakan suatu perintah cukup dengan beberapa baris bahasa mesin sedikit mungkin. Hal ini bisa tercapai dengan cara membuat perangkat keras prosesor mampu memahami dan menjalankan beberapa rangkaian operasi. Untuk tujuan contoh
kita kali ini, sebuah prosesor CISC sudah dilengkapi dengan sebuah instruksi khusus, yang kita beri nama MULT. Saat dijalankan, instruksi akan membaca dua nilai dan menyimpannya ke 2
register yag berbeda, melakukan perkalian operan di unit eksekusi dan kemudian mengambalikan lagi hasilnya ke register yang benar. Jadi instruksi-nya cukup satu saja.

MULT 2:3, 5:2
MULT dalam hal ini lebih dikenal sebagai “complex instruction”, atau instruksi yang kompleks. Bekerja secara langsung melalui memori komputer dan tidak memerlukan instruksi lain seperti fungsi baca maupun menyimpan. Satu kelebihan dari sistem ini adalah kompailer hanya menerjemahkan instruksi-instruksi bahasa tingkat-tinggi ke dalam sebuah bahasa mesin. Karena panjang kode instruksi relatif pendek, hanya sedikit saja dari RAM yang digunakan untuk menyimpan instruksi-instruksi tersebut.

Pendekatan RISC
Prosesor RISC hanya menggunakan instruksiinstruksi sederhana yang bisa dieksekusi dalam satu siklus. Dengan demikian, instruksi ‘MULT’ sebagaimana dijelaskan sebelumnya dibagi menjadi
tiga instruksi yang berbeda, yaitu “LOAD”, yang digunakan untuk memindahkan data dari memori ke dalam register, “PROD”, yang digunakan untuk melakukan operasi produk (perkalian) dua operan yang berada di dalam register (bukan yang ada di memori) dan “STORE”, yang digunakan untuk memindahkan data dari register kembali ke memori. Berikut ini adalah urutan instruksi yang harus dieksekusi agar yang terjadi sama dengan instruksi “MULT” pada prosesor RISC (dalam 4 baris bahasa mesin):
LOAD A, 2:3
LOAD B, 5:2
PROD A, B
STORE 2:3, A
Awalnya memang kelihatan tidak efisien Hal ini dikarenakan semakin banyak baris instruksi, semakin banyak lokasi RAM yang dibutuhkan untuk menyimpan instruksi-instruksi tersebut. Kompailer juga harus melakukan konversi dari bahasa tingkat tinggi ke bentuk kode instruksi 4 baris tersebut.
CISC
RISC
Penekanan pada perangkat keras
Penekanan pada perangkat lunak
Termasuk instruksi kompleks multi-clock
Single-clock, hanya sejumlah kecil instruksi
Memori-ke-memori: “LOAD” dan “STORE” saling bekerjasama
Register ke register: “LOAD” dan “STORE” adalah instruksi2 terpisah
Ukuran kode kecil, kecepatan rendah
Ukuran kode besar, kecepatan (relatif) tinggi
Transistor digunakan untuk menyimpan instruksi2 kompleks
Transistor banyak dipakai untuk register memori

Bagaimanapun juga, strategi pada RISC memberikan beberapa kelebihan. Karena masingmasing
instruksi hanya membuthukan satu siklus detak untuk eksekusi, maka seluruh program (yang
sudah dijelaskan sebelumnya) dapat dikerjakan setara dengan kecepatan dari eksekusi instruksi
“MULT”. Secara perangkat keras, prosesor RISC tidak terlalu banyak membutuhkan transistor
dibandingkan dengan CISC, sehingga menyisakan ruangan untuk register-register serbaguna (general purpose registers). Selain itu, karena semua instruksi dikerjakan dalam waktu yang sama (yaitu satu detak), maka dimungkinkan untuk melakukan pipelining.
Memisahkan instruksi “LOAD” dan “STORE” sesungguhnya mengurangi kerja yang harus dilakukan oleh prosesor. Pada CISC, setelah instruksi “MULT” dieksekusi, prosesor akan secara
otomatis menghapus isi register, jika ada operan yang dibutuhkan lagi untuk operasi berikutnya,
maka prosesor harus menyimpan-ulang data tersebut dari memori ke register. Sedangkan pada
RISC, operan tetap berada dalam register hingga ada data lain yang disimpan ke dalam register yang bersangkutan.

Persamaan Unjuk-kerja (Performance)
Persamaan berikut bisaa digunakan sebagai ukuran unjuk-kerja suatu komputer:
Pendekatan CISC bertujuan untuk meminimalkan jumlah instruksi per program, dengan cara mengorbankan kecepatan eksekusi sekian silus/detik. Sedangkan RISC bertolak belakang, tujuannya mengurangi jumlah siklus/detik setiap instruksi dibayar dengan bertambahnya jumlah instruksi per program.
Penghadang jalan (Roadblocks) RISC
Walaupun pemrosesan berbasis RISC memiliki beberapa kelebihan, dibutuhkan waktu kurang lebih 10 tahunan mendapatkan kedudukan di dunia komersil. Hal ini dikarenakan kurangnya dukungan perangkat lunak. Walaupun Apple’s Power Macintosh menggunakan chip berbasis RISC dan Windows NT adalah kompatibel RISC, Windows 3.1 dan Windows 95 dirancang berdasarkan prosesor CISC. Banyak perusahaan segan untuk masuk ke dalam dunia teknologi RISC. Tanpa adanya ketertarikan komersil, pengembang prosesor RISC tidak akan mampu memproduksi chip RISC dalam jumlah besar sedemikian hingga harganya bisa kompetitif.Kemerosotan juga disebabkan munculnya Intel, walaupun chip-chip CISC mereka
semakin susah digunakan dan sulit dikembangkan, Intel memiliki sumberdaya untuk menjajagi dan melakukan berbagai macam pengembangan dan produksi prosesor-prosesor yang ampuh. Walaupun prosesor RISC lebih unggul dibanding Intel dalam beberapa area, perbedaan tersebut kurang kuat untuk mempengaruhi pembeli agar merubah teknologi yang digunakan.

Keunggulan RISC
Saat ini, hanya Intel x86 satu-satunya chip yang bertahan menggunakan arsitektur CISC. Hal
ini terkait dengan adanya kemajuan teknologi komputer pada sektor lain. Harga RAM turun
secara dramatis. Pada tahun 1977, DRAM ukuran 1MB berharga %5,000, sedangkan pada tahun 1994 harganya menjadi sekitar $6. Teknologi kompailer juga semakin canggih, dengan demikian RISC yang menggunakan RAM dan perkembangan perangkat lunak menjadi semakin banyak ditemukan.
Tabel Perbandingan RICS dengan CISC


Fitur
RICS
PC/Desktop CISC
Daya
Sedikit ratusan miliwatt
Banyak watt
Kecepatan Komputasi
200-520 MHz
2-5 GHz
Manajemen Memori
Direct, 32 bit
Mappped
I/O
Custom
PC berbasis pilihan via BIOS
Environment
High Temp, Low EM Emissions
Need Fans, FCC/CE approval an issue
Struktur Interupsi
Custom, efisien, dan sangat cepat
Seperti PC
Port Sistem Operasi
Sulit, membutuhkan BSP level rendah.
Load and Go

Terima Kasih Anda Telah Membaca Artikel Ini
Dengan Judul: SOAL-SOAL ORKOM
Ditulis Oleh Mr-Y
Berikanlah saran dan kritik atas artikel ini. Terima kasih

0 Response to "SOAL-SOAL ORKOM"

Posting Komentar

Galeri Foto 1

Galeri Foto 1

Galeri Foto 2

Galeri Foto 2

Galeri Foto 3

Galeri Foto 3

Galeri Foto 4

Galeri Foto 4

Galeri Foto 5

Galeri Foto 5